
The Kitten LWK
A More Practical Lightweight Kernel

Kevin Pedretti
Scalable System Software Department

Sandia National Laboratories

ktpedre@sandia.gov

Fast OS Phase II Workshop

June 12, 2009

SAND Number: 2009-3410P

mailto:ktpedre@sandia.gov


Paragon
Tens of users

First periods 

processing MPP

World record 

performance

Routine 3D 

simulations

SUNMOS lightweight 

kernel

ASCI Red
Production MPP

Hundreds of users

Red & Black 

partitions

Improved 

interconnect

High-fidelity coupled 

3-D physics

Puma/Cougar 

lightweight kernel

Cplant
Commodity-based 

supercomputer

Hundreds of users

Enhanced simulation 

capacity

Linux-based OS 

licensed for 

commercialization

Red Storm
41 Tflops

Custom interconnect

Purpose built RAS

Highly balanced and 

scalable

Catamount 

lightweight kernel

nCUBE2
Sandia’s first large 

MPP

Achieved Gflops 

performance on 

applications

1990

1993

1997

1999

2004

Sandia Has a Long History in MPP 

Architectures and System Software



LWK Advantages

• Improved scalability and performance

– Derived from taking full advantage of hardware and providing a

more deterministic runtime environment

– Primary motivator for use on capability systems

• Simple resource management

– Deterministic virt->phys memory mapping, no demand paging

• Simplifies network stack, no page pinning or page table walks

• Enables single-copy intra-node MPI at user-level (SMARTMAP)

• Enables transparent use of large pages, reduces TLB pressure

– Simple task scheduling and affinity

• Better platform for research

– Less complex code-base, slower moving target

– Focus on what’s important rather than working around problems

LWK is focused on “doing the right thing” for HPC on MPPs,

being special-purpose provides freedom to innovate



LWK Disadvantages/Complaints

• It’s not Linux

– Everybody loves Linux! (myself included)

– Is lightweight Linux still “Linux”?

• It’s missing feature X (threads, python, …)

– Can be mitigated by adding feature or through running guest OS

– Users care about the environment, not implementation details

• It’s too much work to maintain

– All OSes will encounter issues on capability platforms

– Low batting average getting HPC patches into Linux (.000?)

• There’s no community around it

– Existing LWKs are closed-source or closed-development

– Bugs at scale are anything but shallow, not many eyeballs

Our position is LWK advantages will be required on future MPPs,

trying to address or mitigate disadvantages with Kitten



Kitten: A More Practical LWK

• Open-source from start, open development

– Project website: http://software.sandia.gov/trac/kitten

– Kernel is GPLv2, leverages code from Linux

– User libraries are LGPL

• Better match for user expectations

– Provides mostly Linux-compatible user environment, including threading

– Supports unmodified compiler toolchains and resulting ELF executables

– Leverages virtualization hardware to load full guest OSes on-the-fly 

(VMM capability provided by Palacios from V3VEE project, http://v3vee.org)

• Better match vendor expectations

– Modern code-base with familiar Linux-like organization

– Drop-in compatible with Linux (e.g., boots like CNL on Cray XT)

– Infiniband support (currently in private tree)

– Engaging with vendors and getting feedback

• End-goal is deployment on future capability system

http://software.sandia.gov/trac/kitten
http://v3vee.org/
http://v3vee.org/
http://v3vee.org/


Kitten Architecture



Improved Out-of-box Experience

make menuconfig; make isoimage

qemu-system-x86_64 –cdrom arch/x86_64/boot/image.iso –smp 4

README includes directions for booting on PC hardware and Cray XT



Included “Hello World” Initial User Task

Source code: kitten/user/hello_world/hello_world.c



Running NPB CG.A as Initial Task

(OpenMP, Fortran)

Environment:
“GFORTRAN_UNBUFFERED_ALL=y OMP_NUM_THREADS=4”
NPB print_results() modified to stop early for clarity

OpenMP



Running Puppy.ISO Linux as Guest OS
Kitten console on serial port, Puppy Linux outputs to VGA

puppy.iso is 95 MB image embedded in hello_world ELF executable,
hello_world starts up then makes syscall to launch guest OS



Motivations for Virtualization in HPC

• Provide full-featured OS functionality in LWK

– Custom tailor OS to application’s needs (ConfigOS, JeOS)

– Allow users to chose compute node OS on-the-fly

– Potential to mix native LWK apps and guest OSes on same node

• Dynamically assign compute node roles

– Currently service/compute ratio is fixed

– Some jobs may benefit if allowed to specify a different balance

• Runtime system replacement

– Capability runtimes often poor match for high-throughput serial

– Runtime environment for guest OSes need not be the same

• Improve resiliency

– Backdoor debug capabilities without special hardware

– VM-based techniques for job checkpointing and migration



VM Overhead Investigation on Cray XT

• Two configurations:

– Native: Compute Node Linux (CNL) or Catamount on raw HW

– Guest: Kitten+Palacios on raw HW, guest CNL or Catamount

• For guest config, two paging schemes tested:

– Shadow: Software-based VMM control of guest page tables

– Nested: Hardware-based control of guest page tables

• Hardware:

– 48 node Cray XT4, 2.2 GHz AMD quad-cores (Budapest)

– Planning larger-scale testing with more applications

• Goal was to provide as thin a virtualization layer as 

possible to achieve best case VM performance

– SeaStar mapped directly into guest, driver para-virtualized

– Guest allocated physically contiguous memory



Shadow vs. Nested Paging

No Clear Winner

Shadow Paging

O(N) memory accesses

per TLB miss

Page tables the

guest OS thinks it

is using

Palacios managed

page tables used by

the CPU

Page Faults

Nested Paging

O(N^2) memory accesses

per TLB miss

Guest OS managed

guest virt to guest phys

page tables

Palacios managed

guest phys to host phys

page tables

CPU MMU



IMB PingPong Latency:

Nested Paging has Lowest Overhead

Compute Node Linux Catamount

7.0 us

13.1 us

16.7 us

4.8 us

11.6 us

35.0 us

Still investigating cause of poor performance of shadow paging on

Catamount. Likely due to overhead/bug in emulating guest 2 MB pages

for pass-through memory-mapped devices.



IMB PingPong Bandwidth:

All Cases Converge to Same Peak Bandwidth

Compute Node Linux Catamount

For 4KB message:

Native: 285 MB/s

Nested: 123 MB/s

Shadow: 100 MB/s

For 4KB message:

Native: 381 MB/s

Nested: 134 MB/s

Shadow: 58 MB/s



16-byte IMB Allreduce Scaling:

Native and Nested Paging Scale Similarly

Compute Node Linux Catamount



HPCCG Scaling

Sparse CG Solver, ~400 MB/node 

5-6% Virtualization Overhead

Compute Node Linux Catamount

Poor performance of shadow paging on CNL due to context switching.

Could be avoided by adding page table caching to Palacios.

Higher is Better

Catamount is essentially doing no context switching, benefiting shadow paging 

(2n vs. n^2 page table depth issue discussed earlier)

48 node MFLOPs/node:

Native: 544

Nested: 495

Shadow: 516 (-5.1%)

48 node MFLOPs/node:

Native: 540

Nested: 507 (-6.1%)

Shadow: 200

Sandia HPCCG miniapplication available from:

https://software.sandia.gov/mantevo/download.html

https://software.sandia.gov/mantevo/download.html


CTH Scaling

Shock Physics Application (Weak Scaling, No AMR)

< 5% Virtualization Overhead

Compute Node Linux Catamount

32 node runtime:

Native: 281 sec

Nested: 294 sec (-4.6%)

Shadow: 308 sec

32 node runtime:

Native: 294 sec

Nested: 308 sec (-4.8%)

Shadow: 628 sec

Poor performance of shadow paging on CNL due to context switching.

Could be avoided by adding page table caching to Palacios.

Lower is Better



Future Virtualization Work

• Support Accelerated Portals on Cray XT

– Eliminates interrupt overhead

– Makes thin virtualization layer even thinner

• Add support for SMP guests to Palacios

• Perform larger scale experiments

– Run on thousands of Cray XT nodes

– Test more applications and more diverse guest Linux workloads

– Evaluate newer CPUs (Shanghai, Istanbul, Nahalem)

• Create user interface for loading guest OS/app



Kitten supports SMARTMAP
Simple Mapping of Address Region Tables for Multi-core Aware Programming

• Direct access shared memory between 
processes on a node

– Access to “remote” data by flipping bits in 
the virtual address

• Each process still has a separate virtual 
address space

– Everything is “private” and everything is 
“shared”

– Processes can be threads

• Allows MPI to eliminate all extraneous 
memory-to-memory copies

– Single-copy MPI messages

– No extra copying for non-contiguous 
datatypes

– In-place and threaded collective operations

• Not just for MPI

– Emulate POSIX shared memory regions

– One-sided PGAS operations

– Can be used by applications directly

• Leverages lightweight kernel page table 
layout

Single copy impact

MPI Exchange

Top-level page table slots

are used to create a fixed-

offset virtual address space

For more information see SC’08 paper on SMARTMAP



Current Status

• Current release (May 1, 2009)

– Available from http://software.sandia.gov/trac/kitten

– Single node, multi-core, x86_64 only

– Support for multi-threaded applications

• Glibc NPTL POSIX threads

• GCC OpenMP

• Sandia Qthreads

– Supports loading guest OSes via Palacios VMM

• Boots guest Cray Linux Environment, Catamount, Kitten, and Puppy Linux

• Supports AMD SVM only

• Tested on PC hardware, Cray XT, and under Qemu

• Development trees

– Support for unmodified OFA Infiniband stack (mthca and ml4x drivers)

– Catamount user-level for multi-node testing (temporary scaffolding)

– Exploring simplified job load mechanism via SLURM compatibility

– Port of Kitten to NEC SX architecture

http://software.sandia.gov/trac/kitten


Conclusion

• Kitten is a more practical LWK

– Fully open-source, open development

– Better matches user, vendor, and researcher expectations

– Straightforward out-of-box experience

– Supports commodity hardware and (soon) Infiniband

• Kitten provides a thin virtualization layer via Palacios

– Increases flexibility of LWK environment

– Collaboration with separately funded V3VEE project (v3vee.org)

• LWK enables novel optimizations for multi-core

– SMARTMAP

– Exploring more opportunities



Acknowledgements

• Kitten

– Michael Levenhagen (SNL)

– Trammell Hudson (SNL)

– Ron Brightwell (SNL)

• SMARTMAP

– Ron Brightwell (SNL)

• Palacios VMM

– Northwestern Univ: Peter Dinda and Jack Lange

– U. of New Mexico: Patrick Bridges and Patrick Widener



Backup Slides



Lines of Code in Kitten and Palacios



Kitten Leverages Linux

• Repurposes basic functionality from Linux kernel

– Hardware bootstrap

– Basic OS kernel primitives (locking, data structures, context switch, …)

– Device driver API (supports unmodified OFA Infiniband stack)

– User-level ABI and API (stack layout, thread-local storage, /sys, …)

• Innovates in key areas

– Memory management

– Network stack

– Multi-core messaging optimizations (SMARTMAP)

– Tick-less operation, OS work split into small pieces


